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A B S T R A C T   

In this research, prediction of mechanical properties of short fiber-reinforced composites manufactured with the 
help of fused filament fabrication (FFF) process is investigated. Three-scale formulation of asymptotic homog-
enization is employed to upscale the properties from microscale to mesoscale and from mesoscale to macroscale. 
Since generating microscale representative volume element (RVE) infused with short fibers requires sophisti-
cated modeling tools, the algorithm for the microscale RVE generation is presented and discussed. Homogeni-
zation was performed for microscale RVEs with random and aligned (fibers aligned with the beads on mesoscale) 
fiber orientations, and for mesoscale RVEs with unidirectional and 0/90 layup formation. Tensile tests were 
performed for different short carbon fiber concentrations 5, 7.5 and 10% (by volume) to validate predicted 
homogenized properties. Moreover, to analyze the morphology of 3D printed specimens, microstructural analysis 
using SEM was performed on all the printed specimens. Surface morphology helped to gain more insight into the 
bead structure and fiber distribution. It was concluded that Young’s modulus prediction using random fiber 
orientation has low relative errors tested in bead direction. Overall, this study has unique contribution to me-
chanical property prediction for FFF-made short fiber-reinforced composite parts.   

1. Introduction 

Additive manufacturing (AM) is a layer-by-layer manufacturing 
process for fabricating a wide range of structures and complex geome-
tries with easily achievable customized features. AM has potential ap-
plications in various areas ranging from aerospace, automotive, 
construction and biomedical industries [21]. Based on different appli-
cation areas and their specific requirements, a number of AM techniques 
have been developed [11] i.e. fused filament fabrication (FFF) [4], 
laminated object manufacturing (LOM) [35], selective laser sintering 
(SLS) [36], stereolithography (SLA) [38]. FFF is one of the most popular 
AM techniques for the fabrication of thermoplastic polymer materials. 
FFF process includes deposition of semi-molten material layer-by-layer 
through a heated nozzle in order to build three-dimensional part. 
Fig. 1 shows the process of depositing fiber-reinforced composite fila-
ment to build 3D part using the FFF technique. Low-cost production 
capability, manufacturing simplicity, customizability, etc. are some of 
the advantages of the FFF that have drawn the attention among in-
dustries and researchers. Nowadays, fiber-reinforced thermoplastics 
have been used in big area additive manufacturing (BAAM) to print 

large parts such as full-scale car frames printed by Oak Ridge National 
Laboratory (ORNL) [14,21]. 

However, parts produced with FFF lack strength, stiffness, thermal 
stability, electrical conductivity, etc. that limit its real life applications. 
Improving, modifying and diversifying the mechanical properties of 
generic materials is possible with the incorporation of fibers. Fibers can 
be short, long and continuous depending upon the application. Tensile, 
fatigue and creep properties of printed reinfroced thermoplastics have 
been extensively studied [25,26,31,39,42,43]. Incorporation of fibers 
helps in obtaining the parts of less weight, high strength, and high 
stiffness with minimal cost. In terms of manufacturability, short carbon 
fibers (SCF) are much more versatile than the long and continuous fibres 
and are useful in all the extrusion process with thermoplastics. Due to 
their low cost, SCF reinforced composites are utilized in a variety of 
fields and are used to enhance the performance of the printed structures 
[23]. In addition, SCF might be useful for achieving the isotropic 
property for the final composite material (CM). An accurate under-
standing of SCF-reinforced composites, especially in the AM process, 
needs to be addressed in terms of mechanics-based modeling and pre-
diction. However, there are many challenges faced in the prediction of 
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mechanical properties of FFF-made parts which include [7]:  

(i) Anisotropy: Overall stiffness of the part varies depending on infill 
pattern and printing direction used. Moreover, the microstruc-
ture of the samples is highly deviated from the actual printed 
microstructure.  

(ii) Heterogeneity: Pores and fillers cause deviation of mechanical 
properties in printed parts. In the case of SCF reinforced ther-
moplastics, voids and fibers greatly influence the mechanical 
properties. 

It is obvious that anisotropy and heterogeneity make mechanical 
behavior and its prediction a complex issue in AM. This has become even 
more involved considering the recent transition from polymeric mate-
rials to fiber-reinforced polymers, metal-infused polymers and other 
complex materials. In other words, since these materials are inherently 
composite in nature (fiber-infused plastic and metal-infused plastic), 
they add another layer of complexity. Other than material, the infill 
pattern also plays an important role in the overall stiffness and behavior 
of the parts. Depending on the slicer software, different infill patterns 
can be generated. Therefore, the microstructure of the samples is 
dependent on the chosen infill pattern and needs specific mathematical 
models to be accounted for. For example, the unidirectional line infill 
with 100% infill density is shown in Fig. 2a. Fig. 2b illustrates interbead 
voids formed between the deposited beads. These voids reduce the 
mechanical properties of the printed parts resulting in anisotropic ma-
terial behavior. 

2. Literature review 

Multiscale methods including homogenization, micromechanics and 
molecular dynamics have been used extensively to study properties of 
composite materials [45,48]. Babu et al. derived and implemented RVE 
generation algorithms for fiber-infused microstructures with different 
fiber orientations [5]. Material properties were predicted for different 
RVEs using asymptotic homogenization and compared to Halpin-Tsai 
and Mori-Tanaka methods. Belhouideg et al. determined the effective 
properties of the bulk metallic glass matrix composite reinforced with 
tungsten fiber from the microstructural description using the homoge-
nization approaches [6]. This study concluded that relative errors be-
tween the homogenization and the experimental results were less than 

10.1%. The results also showed that the shape of inclusions creates a 
strong influence on the mechanical properties of the final part. Islam 
et al. predicted the Young’s modulus of polymer composites reinforced 
with fibers using parallel, series and Halpin-Tsai model, modified 
Halpin-Tsai (MHT) and Bowyer-Bader (BB) model [32]. The results of 
this study observed that the parallel, series and Halpin-Tsai model failed 
to predict the elastic modulus of the reinforced polymer while MHT and 
BB model gave satisfactory results. Bouaoune et al. demonstrated that 
random composite microstructures used in practice do not always 
converge to their periodic counterparts [9]. Additionally, Zerhouni et al. 
showed how isotorpic properties can be obtained by creating RVEs with 
homogeneous isotropic matrix and variable size spherical pores [62]. 

There is a number of studies that focused on mechanical property 
prediction of FFF-fabricated components. Numerous techniques such as 
micromechanical approaches, classical laminate theory (CLT) and 
analytical methods have been utilized to approximate the properties of 
FFF-made parts. Cuan-Urquizo et al. presented an overview of various 
numerical, analytical and experimental methods that were used to es-
timate the structural behavior of printed parts [13]. Same authors used 
finite element analysis (FEA), rule of mixtures and experimental data to 
predict Young’s modulus for different infill densities [18]. Although the 
errors between micromechanics and simulations were negligible, the 
study only investigated Young’s modulus in one direction. Li et al. 
established a micromechanics approach to calculate the orthotropic 
properties of laminated parts [37]. Each printed layer was modeled as a 
lamina while beads and voids were treated as matrix and fibers, 
respectively. Results of the study showed relative errors in the range of 
1–16% between micromechanics and experimental results. Rodriguez 
et al. derived and applied similar micromechanics approximation for 
constitutive modeling of FFF made parts [50]. Croccolo et al. investi-
gated the prediction of mechanical properties of samples with zero air 
gap between the beads [12]. The results of the predictive and experi-
mental properties had approximately 10% difference. Domingo-Espin 
et al. assumed that printed parts are orthotropic instead of anisotropic 
and conducted experiments to calculate all orthotropic properties [15]. 
FEA simulations of sample parts were performed with derived ortho-
tropic properties and isotropic properties for comparison. Error between 
FEA simulation of a sample part using derived orthotropic model and 
experimental results was less than 8%. A similar error was observed in 
the isotropic case and therefore study fails to present sufficient evidence 
that supports the application of the orthotropic material model. 

Fig. 1. Fused filament fabrication of SCF reinforced composites.  
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Somireddy et al. presented a finite element procedure to find elastic 
moduli of a layer of the FFF processed part [54]. Properties obtained 
from FEA simulations were used as an input into CLT that was used to 
estimate homogenized property for the entire printed structure. The 
layers in the study were treated as a unidirectional laminate structure. 
Effective laminate properties were compared to experimental data, and 
relative errors were lower than 5%. Biswas et al. conducted a compu-
tational study based on microstructural information of 3D-printed parts 
using micromechanics approach based on RVE [8]. Micro-CT data and 
periodic geometry for RVE with various raster angles were used in FEA 
models. Although experimental results showed some fluctuations, there 
was an agreement between numerical and experimental results. More-
over, Ngo et al. studied bimaterial bio-inspired composites under 
different loading conditions using FEA [44]. FEA results showed how 
cohesive/adhesive layers mitigate impact loads and minimize plastic 
damage to composite structures. 

As for the printed composites, Moumen et al. summarized the latest 
works on modeling aspects of printed composites [41]. Dutra et al. 
studied the prediction of mechanical properties of printed parts with 
continuous carbon fiber reinforcement [16]. However, uncertainty in 
Young’s modulus of nylon hindered the accurate prediction of properties 
and only modulus values higher than 3 GPa yielded accurate prediction. 
Wang et al. studied the prediction of mechanical properties of 
SCF-reinforced printed composite parts [57]. In their study, the fiber 
orientation was predicted after the deposition process. The fiber orien-
tation distribution function was used to predict the resulting mechanical 
properties using the averaging technique. This study was focused on 
numerical simulations and lacks experimental benchmarking. Fiber 
orientation prediction was mainly studied for simulation of injection 
molding and has been studied both in theoretical [27] and applied [3] 
context. Recent work by Somireddy et al. studied the prediction of 
Young’s modulus for cross-ply and angle-ply printed laminates [55]. 
Experimentally measured modulus for single ply is used as an input to 
CLT. Errors varied between thin and thick plates and were less than 
20%, in general. However, this approach lacks fundamental under-
standing of the hierarchical structure and mechanics of printed 
SCF-reinforced composites. Papon et al. predicted mechanical properties 
of 3D printed composites using non-intrusive polynomial chaos (NIPC), 
rule of mixtures and classical laminate theory [47]. Study accounted for 
stochastic effects on both micro and macro scales and analytical results 
showed good agreement with experimental trends. 

As mentioned before, the hierarchical/multiscale structure of printed 
composite has to be considered in the mathematical model. Although 
FFF-printed polymers have been studied vastly in recent years, property 
prediction of fiber-reinforced composites has not been investigated yet. 
The research study reported in this paper focuses on the application of 
three-scale asymptotic homogenization for the prediction of mechanical 

properties of FFF-made SCF reinforced specimens. Three-scales are 
employed to account for macroscale geometry, mesoscale voids and 
microscale reinforcements. Hierarchical structure allows for flexibility 
in separating the scales and controlling each one of them independently 
from the others. Experimental results were employed to validate and 
benchmark the homogenized properties compared to the real behavior 
of the parts. 

3. Material and methods 

3.1. Computational methods 

3.1.1. Asymptotic homogenization 
Multiscale modeling techniques primarily consist of homogenization 

methods that focus on finding effective material properties thus 
substituting heterogeneous part with an equivalent homogenized one. 
Another family of multiscale methods enriches kinematical relationships 
to capture microstructural effects. Due to the periodic nature (ideally) of 
the infills and lattice structures used in FFF, homogenization methods 
are applicable as a multiscale modeling tool for FFF-made parts. Ex-
amples of different homogenization methods include statistical ho-
mogenization, heterogeneous multiscale method (HMM), asymptotic 
methods, Hill-Mandel macrohomogeneity condition, generalized 
method of cells, FEA based methods and etc. [22,33,34,46,53,61]. In 
this study, asymptotic homogenization (AH) is employed due to its 
extendability to multiple length scales and ability to model hierarchical 
structures. This is crucial to this study since SCF-reinforced printed 
specimens have three-scale hierarchy. Therefore, most of the micro-
mechanics or homogenization methods that are limited to two scales 
would not be applicable to printed SCF-reinforced composites. More-
over, since partial differential equations derived from asymptotic anal-
ysis can be solved using the finite element method, AH can be applied to 
complex geometries. AH predicts homogenized properties of a hetero-
geneous part from material properties of the constituents and RVE ge-
ometry. Microscale stresses, strains, and deformations can also be 
predicted at specific nodes/integration points in the macroscale domain. 
AH can also be further developed to capture nonlinearities, multiple 
scales and other complex phenomena. Therefore, the application of AH 
was explored in this study as a homogenization tool for FFF-made parts. 
Derivation of the equilibrium equations and finite element formulation 
are presented in Appendix A. 

3.1.2. Microscale RVE generation 
RVE generation for microstructures with a high number of inclusions 

is a long-standing challenge. Thomas et al. summarized and compared 
the existing RVE generation algorithms [56]. The main limitation in 
most of the reported algorithms is that there is a limit for achievable 

Fig. 2. Interbead voids in printed part a) Isometric view b) Front view.  
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fiber concentration with a given aspect ratio (AR). Fiber AR is equal to 
the ratio of fiber length to fiber diameter. In present study, nominal AR is 
approximately equal to 14 [2]. In other words, it becomes harder to 
accommodate more fibers to the RVE as the number of fibers increases. 
In this research, concentrations are relatively low, even though fiber AR 
is high. However, typically fiber length after extrusion is different from 
the nominal length because of the fiber breakage due to fiber-to-fiber 
interaction, and fiber contact with extruder lead screw threads. In 
order to get the actual size of the fibers after filament extrusion, ther-
mogravimetric analysis (TGA) was performed at 800◦ C◦ to degrade all 
the PLA material of the sample filament leaving behind only SCF. 
Measured fiber length was equal to 60 μm on average for 5% concen-
tration. Therefore, the fiber length used in the RVE generation was 60 
μm. Detailed algorithm for microscale RVE generation is given in 
Appendix B. 

All the generated RVEs are shown in Fig. 3. RVEs were generated for 
5, 7.5, and 10% for both random (Fig. 3a,b,c) and aligned distributions 
(Fig. 3d,e,f). For random distribution, all fibers had uniform random 
orientation assigned to them. For the aligned distribution, fibers were 
perfectly aligned with bead direction on the mesoscale. The size of RVE 
is also crucial to obtain consistent properties. For random distribution, 
RVE size should be large enough to achieve a quasi-isotropic behavior. 
By quasi-isotorpic behavior it is meant that orthotropic terms in stiffness 
matrix resemble isotropic material behavior while overall stiffness ma-
trix is anisotropic. After several trials, 0.200 mm X .200 mm X .200 mm 
box size was found sufficient to obtain quasi-isotropic behavior. Obvi-
ously, parameters like simulation time and mesh size increase as RVE 
size increases. As a result, RVE size should be as small as possible while 
predicting quasi-isotropic behavior as mentioned before. However, for 
aligned distribution, RVE size does not make much difference since it is 
clear that the orientation is not random and stiffness matrix is going to 
be approximately transversely isotropic. Therefore, RVEs were con-
structed with 0.100 mm X .100 mm X .100 mm box size. Concept of 
quasi-isotropy is illustrated in Eq. (42) which shows homogenized 
stiffness matrix for microscale RVE infused with randomly distributed 
SCF (5% concentration). D(1,1),D(2,2),D(3,3) terms are almost equal 
to each other. The same pattern is observed for D(4,4),D(5,5),D(6,6)
and D(2,1),D(3,1),D(3,2). The rest of the terms in the stiffness matrix 
stand for anisotropic coupling. If anisotropic coupling terms are ignored 
then stiffness matrix becomes almost isotropic. For comparison, Eq. (43) 
represents stiffness matrix for microscale RVE infused with aligned CF 
(5% concetration). In this case, the only difference is that D(3,3) term is 

higher than D(1,1),D(2,2) because fibers are aligned with the Z 
direction. 

3.1.3. Numerical experiments 
In this study, both homogenization and experimental results were 

obtained for two cases: unidirectional (UD) and 0/90 layup. These two 
cases were chosen because tensile experiments can only be performed 
for balanced symmetric laminates due to tension-shear, tension- 
bending, and tension-torsion coupling. Homogenization was performed 
for ideal mesoscale RVEs shown in Fig. 4. Ideal RVE corresponds to the 
RVE modeled according to the microstructure obtained from the slicer 
software tool (Cura). Ideal RVEs were studied to assess the prediciton of 
mechanical properties straight from Cura without the need for micro-
structural images. Constituent material properties of fiber and matrix 
are given in Table 7. Since anisotropy in mechanical properties of carbon 
fibers has low effect on the macroscale properties, carbon fibers were 
assumed to be isotropic for the sake of simplicity. Since the goal of this 
study was to predict the mechanical properties in different directions, 
specimens were printed in the 0, 90, 0V and 0/90, 0/90/V. Specimen 
name coding is explained in Fig. 4 with testing and printing directions 
shown using arrows. In the UD case, 0 stands for samples printed with all 
beads aligned with the tensile force direction during the tensile tests, 90 
stands for samples printed with all beads transverse to the tensile force 
direction during the tensile tests and 0V stands for samples printed and 
tested in vertical direction. In the 0/90 layup, 0/90 stands for samples 
printed with 0/90 layup and tested in bead direction, and 0/90V stands 
for samples printed with 0/90 layup and tested in vertical direction. 
Since 90/0 would be exactly equal to 0/90, 90/0 layup was not studied. 
Additionally, actual RVEs, given in Fig. 4c and d, were studied to assess 
influence of actual printed microstructure on the homogenized proper-
ties. Actual RVE was modeled according to microstructural images given 
in Fig. 5. Actual RVE was randomly selected from microstructure, pro-
cessed using ImageJ image processing software and remodeled in 
SolidWorks. 

3.2. Experimental setup 

A single nozzle 3D printer was used to fabricate the polymer matrix 
composite (PMC) material with SCF reinforcement. Table 2 shows the 
processing parameters employed for the printing process. Fig. 6 shows 
the schematic view of the entire fabrication process used in producing 
the polylactic acid (PLA)/SCF composite material. The setup includes 

Fig. 3. Generated RVEs for various SCF concentrations and random and aligned orientations.  
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the air path, extruder with 2.85 mm diameter hardened steel nozzle, 
filament spooler and 3D printer. PLA pellets are dried in a furnace, 
extruded and printed using Ultimaker 5. Table 1 shows the filament 
extrusion parameters i.e. extrusion speed, extrusion temperature and air 
path speed. Extrusion parameters were carefully adjusted to achieve a 
uniform diameter of the composite filament. 

3.2.1. Material selection 
PLA as the matrix material from 3DXTech and SCF as the rein-

forcement from ZOLTEK were used to fabricate the 3D printed CM. PLA 
is a low-cost biodegradable material which makes it the first choice in 
various applications like bottles, plastic films, aesthetic models, jigs and 
fixtures, biodegradable medical devices (pins, screws, rods, plates, etc). 
The low printing temperature and outstanding surface finish make it an 
ideal 3D printing material. SCF are infused inside the PLA matrix to 

Fig. 4. Mesoscale RVEs for a) UD b) 0/90 layup c) Actual RVE UD d) Actual RVE 0/90.  

Fig. 5. Mesostructural images with indication of poor adhesions and interbead voids.  
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widen the applicability of the resulting CM. High stiffness, high tensile 
strength, low thermal expansion, and low weight are some of the 
properties of SCF that makes them useful as reinforcement. Printed CM 
reinforced with SCF are cheap, easy to manufacture, commonly avail-
able and useful in the fabrication of any type of complex structures that 
are not feasible to manufacture with continuous carbon fibers. 

3.2.2. Experimental procedure 
All the experiments were performed using PLA as the matrix material 

and SCF (having nominal length 100 μm and diameter 7.2 μm) as the 
reinforcement. Using PLA and SCF, three mixtures were prepared by 
mixing them thoroughly according to the following volume fraction of 
SCF 95% PLA +5% SCF (by vol.), 92.5% PLA + 7.5% SCF (by vol.) 90% 
PLA + 10% SCF (by vol.). The prepared mixtures were poured into the 
filament extruder for the composite filament generation. Table 1 shows 
the filament extrusion parameters. Vernier caliper was used to check the 
uniformity of the diameter simultaneously while extruding. Finally, 
extruded PLA/SCF composite filament was used to fabricate the PMC 
samples. The entire procedure was repeated to generate the rest of the 
samples with different concentrations. Tensile properties of PLA/SCF 
were examined using the universal testing machine (UTM-INSTRON 
5582). Tensile testing was conducted in accordance with ASTM D638 

Type I with 5 mm/min strain rate and gauge length of 50 mm. Two 
samples were printed and tested for each SCF concentration. 

4. Results and discussion 

A number of trial experiments were performed to investigate the 
feasibility of using the SCF-reinforced PLA. SCF should have significant 
adhesion with PLA polymer to improve the mechanical performance of 
the final CM. To check the adhesiveness of these materials, SEM analysis 
was performed to observe the interface between fiber and matrix. After 
the investigation, it was found that SCF can be used as the reinforcing 
material with PLA material because of the significant adhesion as shown 
in Fig. 7. 

4.1. Microstructural analysis 

In order to analyze the microstructure of the 3D printed parts, small 
samples with dimensions 10 mm × 10 mm × 10 mm were printed. These 
samples were cut from two faces with the help of a diamond saw cutter 
to obtain the side and cross-sectional view of the CM. Polishing was done 
with silicon carbide emery papers to achieve the mirror finish. Excess 
polymer material from the surface of the carbon fibers was removed 
using potassium permanganate etching (Sulfuric acid – 50 ml, Ortho-
phosphoric acid – 20 ml, Distilled water – 5 ml and Potassium per-
manganate – 0.55 g) to get clear images of embedded fibers inside the 
PLA matrix. Fig. 7 shows the SEM images of the SCF-reinforced PLA 
matrix (10% by vol.). From the figure, it is concluded that there is no 
fiber agglomeration and the fibers are uniformly distributed inside the 
PLA matrix which eventually helps in enhancing the stiffness values of 
the final CM. It should be noted that extruded filaments were re- 
extruded to unifromly distribute fibers throughout the filament. 

4.2. Experimental results 

As mentioned before, the tensile specimens were printed with the 
specimen codes as shown in Fig. 4 for all SCF concentrations. Table 3 
shows the experimental results in all directions. Stress-strain curves for 
all volumetric fraction and orthotropic directions are given in Fig. 8. 
From the table, it can be observed that the elastic modulus increases 
with increase in fiber concentration inside the PLA samples printed in 
0 and 0/90 directions. This trend is not consistent for the samples 
printed in other directions. The reason of this behavior could be related 
to poor bead-to-bead and layer-to-layer adhesion as shown in Fig. 5. 
Since the SCF used in making the 3D printed CM are stiffer than the PLA 

Fig. 6. Process chart for fabricating SCF-reinforced composites.  

Table 1 
Filament extrusion process parameters.  

Properties Values 

Extrusion Temperature (◦C) 215 
Air Path Speed (m/sec) 30 
Extrusion Speed (mm/sec) 25 
Filament Diameter (mm) 2.65–2.85  

Table 2 
Printing process parameters.  

Properties Values 

Bed Temperature (◦C) 50 
Extrusion Temperature (◦C) 215 
Infill Density (%) 100 
Infill Pattern Line 
Layer Thickness (mm) 0.3 
Printing Speed (mm/sec) 30 
Number of shell/top/bottom layers 0 
Cooling Fan (%) 100  
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polymer, they have the tendency to restrict the movement of polymer 
chains in the proximity of other chains resulting higher stiffness of the 
final part than the neat PLA. Maximum Young’s modulus achieved was 
approximately 150% of the neat PLA. There is evident anisotropy in 
strength and stiffness properties over the tested directions. This has also 
been concluded in numerous studies on 3D printed parts [4,17]. 

Tensile strength did not increase consistently with increase in fiber 
concentration. Furthermore, the tensile strength of the reinforced-PLA 
was less than the neat PLA in all directions because of the formation 
of local stresses inside the specimen. Stress concentrations form due to 
both mesoscale voids and fibers. Microscale normalized Von Mises 
stresses under loading in X direction is shown in Fig. 9. It is seen that 
stresses are concentrated at the sharp corners of the RVE. Fig. 7 shows 
that the SCF inside the PLA material are not perfectly aligned. As the 
tensile load is applied, fibers start acting as the stress concentrators 
resulting in the formation of local stresses. These local stresses initiate 
cracks that propagate at the interface of two materials and result in 
matrix cracking. 

4.3. Homogenization results 

4.3.1. Ideal RVE 
Overall, three-scale hierarchy showing workflow from micro to 

macroscale is shown in Fig. 10. Since orientation of fibers was not found 
experimentally, it was assumed as random and aligned with the beads. 
As mentioned before, ideal and actual mesoscale RVEs were studied to 
understand mesostructure. Therefore, first, ideal mesoscale RVE with 
random and aligned fiber orientation was investigated. A comparison of 

experimental and homogenized results are given in Table 4. It is clear 
from Table 4 that homogenization errors for 0 direction are under 10%. 
However, high errors are observed in 90 direction and vertical samples. 
Similarly, it is evident that the relative errors for the 0/90 direction are 
around 10%–20%. On the other hand, comparative errors in predicted 
modulus for 0/90/V are more than 50%. As in UD case, predictions of 
moduli for vertically printed samples have relative errors higher than 
40%. Therefore, the errors for samples printed in 0 and 0/90 directions 
are low while for 90 and vertically printed samples have significant 
errors. As mentioned in Section 4.2, one possible reason for high errors 
in transverse and vertical directions is poor layer-to-layer and bead-to- 
bead adhesion, as shown in Fig. 5. 

As for microscale RVEs with aligned fiber orientations, a comparison 
between experimental and homogenized results is given in Table 4. As 
the results present, properties are overestimated for all directions by a 
high margin. Fig. 7 shows that the SCF inside the PLA material are not 
perfectly aligned. Therefore, perfectly aligned fiber orientation 
assumption is innacurate in this case. Similarly, Somireddy et al. per-
formed CT-scanning and concluded that fibers are not perfectly aligned 
with the printing direction [55]. 

4.3.2. Actual RVE 
Homogenized properties for actual RVE are given in Table 5. Since 

aligned fiber orientation results in dramatically high errors, only 
random fiber orientation was used for simulations with actual RVE. It 
can be seen that errors in 0 samples are slightly higher (<15%) while 
errors for 90 and 0V have improved significantly. Similarly, errors in 0/ 
90 directions and 0/90 V directions have improved. It is worth noting 
that 0 and 0/90 directional properties are relatively easy to accurately 
predict while prediction of 90 and vertical directional properties still 
remains a challenge. Moreover, since actual RVE was randomly picked 
from microstructure, properties derived from it do not necessarily 
represent the average properties over the microstructure. This can 
explain the variations of the properties in 90 and vertical directions. 
Overall, it clear that random orientation yields better prediction than 
aligned orientation. The same conclusion was reached by Heller et al. 
who modeled flow thorugh the nozzle in the FFF process [10,29,30]. 
Results revealed that die swell effect decreases the fiber alignment upon 
nozzle exit and therefore fibers are not perfectly aligned throughout the 
bead. Note that while deriving properties for actual RVE and random 
fiber orientations, all the anisotropy was ignored. In other words, 
anisotropic material behavior was reduced to orthotropic behavior to 
extract orthotropic material properties. 

For completeness, homogenized properties derived for all RVEs are 
shown in Table 6. Axis 3 is the axis along the bead, axis 2 is the vertical 
axis and axis 1 is the transverse axis. Homogenized Young’s moduli and 
shear moduli steadily increase for all cases while Poisson’s ratio stays 
roughly the same. Furthermore, moduli values for ideal RVEs are higher 
than actual RVE as expected. 

Fig. 7. SEM images showing the interface and uniform fiber distribution for SCF (10% by vol)/PLA  

Table 3 
Testing results for SCF reinforced specimens.  

Direction 5% 

Young 
Modulus (GPa) 

Standard 
Deviation 

Tensile 
Strength (MPa) 

Standard 
Deviation 

0 4.418 0.186 39.486 1.232 
90 2.180 0.213 12.708 2.418 
0 V 2.741 0.191 25.376 0.726 
0/90 3.501 0.100 31.534 2.631 
0/90/V 2.396 0.165 17.338 5.704 
Direction 7.5% 
0 4.573 0.035 33.422 4.434 
90 2.966 0.536 30.461 7.156 
0 V 2.412 0.143 16.037 0.632 
0/90 3.382 0.065 26.344 0.611 
0/90/V 2.194 0.366 16.887 0.101 
Direction 10% 
0 5.223 0.131 38.259 3.438 
90 2.463 0.251 23.332 2.361 
0 V 3.458 0.272 30.893 0.440 
0/90 3.916 0.124 26.350 2.756 
0/90/V 2.476 0.214 17.426 5.920  
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5. Conclusion 

The present research study focuses on the numerical prediction of 
mechanical properties of the FFF-made SCF-reinforced PLA specimens. 
Mechanical properties were predicted using three-scale asymptotic ho-
mogenization for both random and aligned fiber distributions in five 

different directions i.e. 0, 90, 0V, 0/90, 0/90V. Mechanical behavior of 
the 3D printed samples was also studied experimentally. FFF technique 
was used to fabricate the SCF-reinforced PLA composite specimens. 
Mechanical properties and surface characteristics were investigated. 
Then, homogenized properties were compared to experimental results. 
After experimental investigation, the following points were concluded: 

Fig. 8. Stress-strain curves for a) 5% b) 7.5% and c) 10%.  

Fig. 9. Microscale normalized Von Mises stress fields.  
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Fig. 10. Macroscale, mesoscale and microscale domains and three-scale hierarchy.  

Table 4 
Comparison between experimental results and homogenized results for ideal RVE.  

Concentration Modulus 
Direction 

Experimental Young’s 
modulus (GPa) 

Standard 
Deviation 

Homogenized Random Orientation Homogenized Aligned Orientation 

Homogenized Young’s 
modulus (GPa) 

Error 
(%) 

Homogenized Young’s 
modulus (GPa) 

Error 
(%) 

5% 0 4.418 0.186 4.150 6.048 6.389 44.408 
5% 90 2.180 0.213 3.120 43.119 2.834 28.852 
5% 0V 2.741 0.191 4.078 48.748 3.833 39.811 
5% 0/90 3.501 0.100 3.881 10.882 4.884 39.512 
5% 0/90 V 2.396 0.165 3.996 66.759 3.829 59.802 
7.5% 0 4.573 0.035 4.444 2.822 7.992 74.756 
7.5% 90 2.966 0.536 3.404 14.772 3.031 2.211 
7.5% 0 V 2.412 0.143 4.388 81.939 4.110 70.413 
7.5% 0/90 3.382 0.065 4.195 24.042 5.826 72.288 
7.5% 0/90V 2.194 0.366 4.299 96.004 4.156 89.453 
10% 0 5.223 0.131 4.932 5.563 9.705 85.814 
10% 90 2.436 0.251 3.689 49.753 3.204 30.056 
10% 0 V 3.458 0.272 4.901 41.740 4.334 25.360 
10% 0/90 3.916 0.124 4.602 17.529 6.797 73.572 
10% 0/90 V 2.476 0.214 4.801 93.941 4.440 79.359  

Table 5 
Comparison between experimental results and homogenized results for actual RVE.  

Concentration Modulus Direction Experimental Young’s modulus (GPa) Standard Deviation Homogenized Random Orientation 

Homogenized Young’s modulus (GPa) Error (%) 

5% 0 4.418 0.186 3.804 13.888 
5% 90 2.180 0.213 2.697 23.721 
5% 0V 2.741 0.191 2.491 9.134 
5% 0/90 3.501 0.100 3.227 7.814 
5% 0/90 V 2.396 0.165 1.434 40.156 
7.5% 0 4.573 0.035 4.073 10.941 
7.5% 90 2.966 0.536 2.942 0.797 
7.5% 0 V 2.412 0.143 2.680 11.116 
7.5% 0/90 3.382 0.065 3.488 3.142 
7.5% 0/90V 2.194 0.366 1.543 29.657 
10% 0 5.223 0.131 4.520 13.457 
10% 90 2.463 0.251 3.188 29.425 
10% 0 V 3.458 0.272 2.994 13.695 
10% 0/90 3.916 0.124 3.825 2.319 
10% 0/90 V 2.476 0.214 1.715 30.727  
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• SCF are uniformly distributed inside the PLA based CM with suffi-
cient adhesion between the fibers and matrix to create a significant 
influence on the final mechanical properties of the specimens.  

• SCF are not perfectly aligned in the printing directions i.e. oriented at 
some angle with respect to printing directions.  

• Young’s modulus in 0 and 0/90 directions constantly increases up to 
1.5 times modulus of neat PLA. However, decrease in tensile strength 
was observed after fiber reinforcement. 

Using the asymptotic homogenization approach, the following points 
were concluded:  

• In case of random fiber orientation, relative errors were low in the 
direction of beads for unidirectional case and 0/90 layup case 
(∼20%). However, relative errors were high for transverse direction 
and vertically printed cases (>40%). Suggested reason for this is 
inconsistent layer-to-layer and bead-to-bead adhesion. As for the 
aligned fiber orientation, homogenized results showed significant 
error percentages in all directions (>28%). Therefore, random fiber 
orientation yields better predictions than aligned fiber orientation.  

• Using actual RVE, relative errors were improved significantly. Errors 
in 0, 0V, 0/90 were less than 20% while errors for 90 and 0/90V were 
less than 40%. This proves that influence of actual microtructure is 
substantial on mechanical properties and is far from ideal. 

6. Future work 

As a continuation of the current work the following possible con-
tributions could be made:  

• Predicting or experimentally measuring the fiber length/orientation 
distribution to improve the accuracy of numerical predictions is a 
potential research study to follow-up on the current research results. 
Fiber length distribution (that was assumed constant in this study) 
changes with changing concentration and should be measured 
experimentally or theoretically. Computed tomography could be 
employed as an experimental technique to measure fiber orientation 
distribution [59] or segmentation methods that reconstruct 3D 

models from 2D micrographs could also be used [40]. For theoretical 
predictions, different fiber orientation prediction models obtained 
for injection molding and BAAM could be employed to find the fiber 
orientation distribution function [3].  

• Furthermore, microscale voids can be characterized and included in 
microscale generation algorithms. As for mesoscale microstructure 
representation, since mesoscale actual RVE was randomly selected in 
this study, in general it can be averaged over the microstructure to 
achieve more accurate results.  

• The input properties at layer-to-layer and/or bead-to-bead interfaces 
are not clearly understood. Predicting or experimentally measuring 
interface properties could improve the accuracy of the existing 
models. Moreover, the fiber-matrix interface could be modeled using 
imperfect interfaces. 
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A. Three-scale asymptotic homogenization 

AH is based on asymptotic expansion of primary field (displacement field in case of elasticity) over macroscopic and microscopic domains [24,28, 
49,52]. Similar to the two-scale case, displacement field is expanded in three scales as follows 

Table 6 
Orthotropic homogenized properties obtained from simulations.  

RVE Layup Property Ideal RVE random Ideal RVE Aligned Actual RVE Random 

5 7.5 10 5 7.5 10 5 7.5 10 

0 E1 (Gpa) 3.120 3.404 3.689 2.834 3.031 3.204 2.697 2.942 3.188 
E2 (Gpa) 4.078 4.388 4.901 3.833 4.110 4.334 2.491 2.680 2.984 
E3 (Gpa) 4.150 4.444 4.932 6.389 7.992 9.705 3.804 4.073 4.520 
NU12 0.265 0.269 0.256 0.320 0.327 0.334 0.222 0.226 0.215 
NU13 0.252 0.255 0.247 0.156 0.133 0.116 0.237 0.240 0.233 
NU23 0.343 0.338 0.336 0.213 0.179 0.154 0.229 0.225 0.223 
G23 (Gpa) 1.603 1.701 1.948 1.382 1.468 1.550 1.108 1.179 1.345 
G31 (Gpa) 1.315 1.434 1.590 1.146 1.218 1.310 1.174 1.280 1.420 
G12 (Gpa) 1.405 1.541 1.679 1.189 1.247 1.322 0.964 1.056 1.148 

0/90 E1 (Gpa) 3.923 4.279 4.642 4.886 5.829 6.800 3.264 3.560 3.860 
E2 (Gpa) 3.996 4.299 4.801 3.829 4.156 4.440 1.434 1.543 1.715 
E3 (Gpa) 3.840 4.111 4.563 4.882 5.824 6.794 3.190 3.415 3.790 
NU12 0.322 0.326 0.310 0.371 0.377 0.382 0.283 0.287 0.273 
NU13 0.314 0.317 0.309 0.241 0.216 0.197 0.275 0.279 0.271 
NU23 0.338 0.333 0.331 0.291 0.269 0.250 0.128 0.127 0.125 
G23 (Gpa) 1.520 1.613 1.844 1.300 1.375 1.454 0.707 0.754 0.853 
G31 (Gpa) 1.431 1.564 1.730 1.246 1.325 1.424 1.183 1.292 1.430 
G12 (Gpa) 1.529 1.679 1.829 1.300 1.375 1.454 0.714 0.782 0.851  
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uε(x)= u(x, y, z)≈ u(0)(x)+ εu(1)(x, y)+ ε2u(2)(x, y, z)+ ε3u(3)(x, y, z) + H.O.T. (1) 

where x is macroscale position vector defined over macroscale domain X, y is mesoscale position vector defined over RVE domain Y and z is microscale 
position vector defined over RVE domain Z. H.O.T. stands for higher order terms that were ignored in this study. It should be noted that leading order 
term is independent of both y and z, first order term is independent of z. Strain tensors at various scales are given by 

εmicroij (x, y, z)= u(0)
(i,xj)

(x)+ u(1)
(i,yj)

(x, y) + u(2)
(i,zj)

(x, y, z) (2)  

εmesoij (x, y)=
1
|Z|

∫∫∫

Z

εmicroij (x, y, z) dZ (3)  

εmacroij (x)=
1
|Y|

∫∫∫

Y

εmesoij (x, y) dY (4)  

and stress tensors at various scales are given by 

σmicroij (x, y, z)=Cijkl(z)εmicrokl (x, y, z) (5)  

σmesoij (x, y)=
1
|Z|

∫∫∫

Z

σmicroij (x, y, z) dZ (6)  

σmacroij (x)=
1
|Y|

∫∫∫

Y

σmesoij (x, y) dY (7) 

Finally, equilibrium equations for different ε terms are given as follows 

microscale
(
ε− 2) σmicroij,zj (x, y, z)= 0 (8)  

mesoscale
(
ε− 1) σmesoij,yj (x, y)= 0 (9)  

macroscale
(
ε0) σmacroij,xj (x)+ bmacroi = 0 (10) 

By explicitly writing out terms in microscale equilibrium equation and using separation of variables technique it follows that 

σmicroij,zj (x, y, z) =
(
ℂijkl
(
u(0)
(k,xl)(x) + u(1)

(k,yl)(x, y) + u(2)
(k,zl)(x, y, z)

))

,zj
=
(
ℂijkl(z)

(
IIklmn + φmn(k,zl)(z)

))

,zj

(
u(0)
(m,xn)(x) + u(1)

(m,yn)(x, y)
)

∵u(2)
(k,zl)(x, y, z) = φmn(k,zl)(z)

(
u(0)
(m,xn)(x) + u(1)

(m,yn)(x, y)
)
=
(
ℂijkl
(
z
)(

Iklmn + φmn(k,zl)(z))),zj ε
meso
mn

(
x, y
)
= 0

(11)  

and therefore 
(
ℂijkl(z)

(
Iklmn + φmn(k,zl)(z)

))

,zj
= 0 ∀ εmesomn (x, y) ∕= 0 (12)  

where φmn
k is displacement influence function (similar to two-scale case) over microscale domain. Periodic boundary conditions and normalization 

condition are given as follows 

φmnk (z) = φmnk (z+ kl) on ∂Z
∫∫∫

Z

φmnk dZ = 0 (13) 

Stiffness tensor can be derived in a similar manner 

σmesoij (x, y)= 1
|Z|

∫∫∫

Z
σmicroij (x, y, z) dZ

=
1
|Z|

∫∫∫

Z

(
Cijkl

(
u(0)
(k,xl)(x)+ u

(1)
(k,yl)(x, y)+ u

(2)
(k,zl)(x, y, z)

))
dZ

=
1
|Z|

∫∫∫

Z

(
Cijkl

(
Iklmn + φmn(k,zl)

))
dZ

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Eijmn

εmesomn

(14)  

where Eijmn is homogenized stiffness tensor on mesoscale. Next, similar steps are followed for Eq. (9) as follows  

σmesoij,yj (x, y)=
(

Eijkl

(
u(0)
(k,xl)(x) + u(1)

(k,yl)(x, y)
))

,yj
(15) 
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=
(

Eijkl(y)
(

Iklmn + χmn(k,yl)(y)
))

,yj

(
u(0)
(m,xn)(x)

)

∵u(1)
(k,yl)(x, y) = χmn(k,yl)(y)

(
u(0)
(m,xn)(x)

)

=
(

Eijkl

(
y
)(

Iklmn + χmn(k,yl)(y))),yj ε
macro
mn

(
x
)
= 0  

Fig. 11. Imposing PBC for irregular meshes.  

Fig. 12. Three-scale homogenization framework.   
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Table 7 
PLA and SCF properties  

Properties PLA [20] SCF [2] 

Melting Temperature (◦C) 215 – 

Density (
g

cm3)  1.252 1.81 

Tensile Strength (MPa) 70 4137 
Young Modulus (GPa) 3.5 242 
Poisson’s Ratio 0.36 0.2    

Finally, homogenized properties for macroscale are obtained as follows 

σmacroij (x, y)= 1
|Y |

∫∫∫

Y
σmesoij (x, y, z) dY

=
1
|Y|

∫∫∫

Y

(
Eijkl

(
u(0)
(k,xl)(x)+ u

(1)
(k,yl)(x, y)

))
dY

=
1
|Y|

∫∫∫

Y

(
Eijkl

(
Iklmn + χmn(k,yl)

))
dY

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Dijmn

εmacromn

(16)  

where Dijmn is homogenized stiffness tensor on macroscale. Eq. A.10 remains the same and is shown below with macroscale boundary conditions. 

σmacroij,xj (x)+ bmacroi = 0 on X (17)  

u(0)i = ũ(0)i on ∂X (18)  

t(0)i = t̃(0)i on X (19) 

Shortly summarizing boundary value problems (BVPs), we have 

Microscale
(

Cijkl(z)
(

Iklmn + φmn(k,zl)(z)
))

,zj
= 0 on Z (20)  

φmnk (z)=φmnk (z+ kl) on ∂Z (21)  

1
|Z|

∫∫∫

Z

φmnk dZ= 0 on Z (22)  

Mesoscale
(

Eijkl(y)
(

Iklmn + χmn(k,yl)(y)
))

,yj
= 0 on Y (23)  

χmnk (y)= χmnk (y+ kl) on ∂Y (24)  

1
|Y|

∫∫∫

Y

χmnk dY = 0 on Y (25)  

Macroscale σmacroij,xj (x)+ bmacroi = 0 on X (26)  

u(0)i = ũ(0)i on ∂X (27)  

t(0)i = t̃(0)i on X (28)  

Mesoscale homogenized stiffness Eijmn=
1
|Z|

∫∫∫

Z

(
Cijkl

(
Iklmn+φmn(k,zl)

))
dZ (29)  

Macroscale homogenized stiffness Dijmn =
1
|Y|

∫∫∫

Y

(
Eijkl

(
Iklmn+ χmn(k,yl)

))
dY (30)   
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Fig. 13. RVE generation algorithm and framework.  

Fig. 14. RVE Generation a) Fiber parametrization and b) Imposing RVE periodicity.  

Finite element method is employed to solve equilibrium PDEs. Since Eq. (22) and Eq. (23) are similar, finite element procedure will be shown on 
one of them. Multiplying Eq. (23) by test function, wk , integrating over volume, applying integration by parts and divergence theorem  

∫∫∫

Θ
wiℂijkl

(
Iklmn + χmn(k,yl)

)

,yj
dΘ =

∫∫∫

Θ

(
wiℂijkl

(
Iklmn + χmn(k,yl)

))

,yj
dΘ +

∫∫∫

Θ
wi,yjℂijkl

(
Iklmn + χmn(k,yl)

)
dΘ =

∫∫∫

∂Θ
wiℂijkl

(
Iklmn + χmn(k,yl)

)
nΘ
j dγ

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
(
ℂijkl

(
Iklmn+χmn

(k,yl)

)
is anti− periodic on ∂Θ

+

∫∫∫

Θ
wi,yjℂijkl

(
Iklmn + χmn(k,yl)

)
dΘ = 0

(31) 

Since boundary integral term vanishes, only volume integral is left. Volume integral is further decomposed into two terms as follows 
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∫∫∫

Θ
wi,yjCijmndΘ+

∫∫∫

Θ
wi,yjCijklχmn(k,yl) dΘ= 0 (32) 

Eq. (32) is the weak form. After deriving weak form, finite element discretization has to be employed. Finite element interpolation of displacement 
influence function and test function is given below 

χmnk =
∑NNEL

A=1
NAdmnAk wk =

∑NNEL

A=1
NAcAk (33)  

where NNEL is number of nodes per element which is equal to four for linear tetrahedral elements used in this study. Plugging discretized functions 
into the weak form yields 

−
∑NEL

e=1
cAi

[∫∫∫

Θe

∂NA

∂ξI
∂ξI
∂yj
ℂijmn|J| dΘe

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
FmnAfi

==
∑NEL

e=1
cAi

[∫∫∫

Θξ

∂NA

∂ξI
∂ξI
∂yj
ℂijkl

∂NB

∂ξJ
∂ξJ
∂yl

|J| dΘξ

]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
KABfik

dmnBk (34)  

where NEL is number of elements. Summing matrices over all elements 

− ciFmnfi = ciKfik d
mn
k (35)  

− Fmnfi = Kfik d
mn
k ∀ci ∕= 0 (36) 

After assembly, boundary conditions have to be applied as well as the normalization condition. In this study, aforementioned conditions are 
enforced through Lagrangian multipliers. This is accomplished by augmenting stiffness matrix with constraint matrices which contain linear equations 
that fix specific degrees of freedom (DOFs). Furthermore, solution vector is augmented by Lagrangian multipliers and force vector is augmented by a 
vector of zeros. Resulting system is shown below 
[
− Fmn

f

0

]

=

[
Kf BT

B 0

][
dmn

λmn

]

(37)  

where B is global constraint matrix, Kf is stiffness matrix, Fmn
f is global force tensor, dmn is global solution tensor and λmn is global Lagrangian multiplier 

tensor. It was found that system above can be solved using LDLT decomposition from direct methods. Among iterative methods, minimal residual 
method (MINRES) was applied with diagonal preconditioner [51,58]. 

In order to solve BVPs, boundary and normalization conditions have to be applied. Although it was discussed that periodic boundary conditions 
(PBCs) are applied through Lagrangian multipliers, this concept is discussed further in this section. Basically, nodes on opposite planes/faces have to 
constrained to deform equally. All the vertices are constrained to deform equally while the edges aligned with the same axis are forced to move 
equally. However, a node on one face does not necessarily have a corresponding node onto the other face with the same planar coordinates. This is 
typically hard to control in the unstructured meshes. Therefore, nodes on one face are mapped on the opposite face. Mapped nodes are placed in a 
triangle that is intersection between tetrahedral element and boundary of RVE. Since coordinates of the nodes are known, the triangle is mapped to 
ideal coordinates as illustrated in Fig. 11. Then, a value for a variable χ at node D is interpolated between A, B, and C as shown in equation below 

χmnDk = χmnAk ξ+ χmnBk (1 − ξ)(1 − η) + χmnCk η (38)  

where ξ and η are calculated using equation below 
[
xD − xB
yD − yB

]

=

[
xA − xB xC − xB
yA − yB yC − yB

][
ξ
η

]

(39) 

In order to form constraint matrix, terms in Eq. (38) have to be moved to the right hand side and constants in front of corresponding χmn
k terms have 

to recorded in the matrix. In other words, the following equation shows the constraint equation for a sample slave node D imposed in the constraint 
matrix 

λmnDk

(
− χmnDk + χmnAk ξ+ χmnBk (1 − ξ)(1 − η)+ χmnCk η

)
= 0 (40)  

where λ is Lagrangian multiplier corresponding to the number of constraint equation. Eq. (40) is appended to the constraint matrix B with global node 
numbers instead of the local ones. There are as many equations appended as many degrees of freedom on the slave face. Eq. (22) is imposed using 
Lagrangian multipliers and by breaking up the integral into set of linear equations using shape functions as shown below: 

λk
∑NEL

EL=1

(
1
|Z|

∫∫∫

Z

∑NNEL

A=1
NAφmnAk dZ

)

= 0 (41) 

φ is discretized over the element and interpolated using shape functions N, then equation is integrated over the element using isoparametric 
mapping. Then, for each m and n there will be three equations to impose, due to the index k. These equations were appended to constraint matrix B 
with global degrees of freedom replacing the local ones. 

Overall procedure is illustrated in Fig. 12. The macroscale and RVE geometries are generated in SolidWorks and FreeCAD, and meshed in ANSYS. 
Mesoscale and microscale RVEs were meshed with linear tetrahedral elements and macroscale specimen was meshed with linear hexahedral elements. 
Mesoscale ideal 0 and 0/90 RVEs were meshed with 43483 and 86870 elements. Mesoscale actual 0 and 0/90 RVEs were meshed with 77073 and 
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155536 elements. Microscale random 5%, 7.5% and 10% RVEs were meshed with 996552, 1098529 and 1288091 elements. Microscale aligned 5%, 
7.5% and 10% RVEs were meshed with 159631, 201867 and 243367 elements. Mesh refinement procedure was carried out at each homogenization 
case and stopped when difference between obtained modulus values was less than 1%. Generated mesh was imported in MATLAB where all of the 
discussed PDEs and post-processing steps were carried out. Finally, FEM results are exported to Paraview to visualize obtained results such as 
deformation, strain and stress fields [60]. It should be noted that fiber-matrix interface was assumed to be perfect and, therefore, nodes on the 
fiber-matrix interface were merged. 

B. Microscale RVE Generation 

The fiber generation algorithm used in this research is shown in Fig. 13. P1 and P2 are vectors defining the position of the fiber in space as shown in 
Fig. 14a. In this study, the length was assumed to be equal to the average length and the diameter was assumed to be equal to the nominal diameter of 
the fibers. Periodicity was imposed by copying and translating fibers that cross the RVE boundary accross the RVE length. Then part of fibers that cross 
RVE boundary are cut. This concept is illustrated in Fig. 14b. It is obvious that if RVE is copied and translated by its size then two fiber pieces will 
generate a full fiber thus ensuring periodicity. 

Last important concept in the algorithm is checking for the fiber-to-fiber intersection. This is done by calculating minimum distance between two 
fibers and comparing it to the fiber diameter. If the distance is smaller than the fiber diameter then fibers intersect and a new fiber has to be generated. 
The algorithm for calculating minimum distance between two line segments is described in detail by Eberly [19]. The MATLAB code for this problem is 
given in Ref. [1] and is adopted in this research to measure fiber-to-fiber intersection. 

Drandom =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.893*109 SYM SYM SYM SYM SYM
3.576*109 6.801*109 SYM SYM SYM SYM
3.557*109 3.573*109 6.774*109 SYM SYM SYM
1.005*106 − 3.788*107 − 4.695*107 1.694*109 SYM SYM
6.629*107 3.378*107 6.267*107 2.228*107 1.670*109 SYM
− 1.262*106 2.763*106 2.484*107 4.039*107 − 2.145*105 1.705*109

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(42)  

Daligned =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

6.297*109 SYM SYM SYM SYM SYM
3.438*109 6.303*109 SYM SYM SYM SYM
3.440*109 3.449*109 9.107*109 SYM SYM SYM
− 8.570*105 1.159*106 1.327*106 1.458*109 SYM SYM
− 8.966*105 − 6.579*105 − 3.336*106 3.842*106 1.452*109 SYM
4.368*106 3.304*106 3.139*106 2.371*105 − 5.531*105 1.433*109

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(43)  
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Reyes G. Mechanical property characterization and simulation of fused deposition 
modeling Polycarbonate parts. Mater Des 2015;83:670–7. https://doi.org/ 
10.1016/j.matdes.2015.06.074. 

[16] Dutra TA, Ferreira RTL, Resende HB, Guimarães A. Mechanical characterization 
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